

Course Title	G19/307: Theory and Practice of Lime and Cement Stabilisation
Duration	1 day
Delivery Mode	Day course
Cost	£250 + VAT per delegate
Delegate Nos.	5 to 15
Intended	Geotechnical engineers, engineering geologists and other engineers
Audience	with experience of earthworks wanting to expand their understanding
	and skills to include soil stabilisation with lime and cement.
Objectives	At the end of this course delegates should have:
	 Understood the theoretical basis of how binders affect soil
	properties and explored a range of applications for treated soil.
	 Examined how to prepare a mix design programme and
	considered good site practices, with reference to HA74/07 and
	BS EN 16907-4:2018.
	Examined key aspects of how soil treatment is included within a
	wider earthworks specification, including requirements for
	monitoring, control and reporting.
Course	I he treatment of soil with binders such as lime and cement during
Description	earthworks can be effective at achieving project strength, stiffness
	and settlement requirements using materials that would otherwise be
	unsuitable. This has lead to the increasing use of soil stabilisation.
	Often soil treatments are considered to be 'anosislist design' with
	onen son treatments are considered to be specialist design, with
	stabilisation contractors establishing binder combinations to meet
	understanding of this 'black art' between specialists and overall
	scheme designers, leading to uncertainties such as "is all that
	cement really necessary" and "could our project fail like the M40?"
	The reality is that soil stabilisation is not a 'black art' and experienced
	practitioners should be working through a well-structured approach
	to designing, executing and validating the treatment. This should
	align closely with industry guidance (e.g. HA74/07) and the recently
	published BS EN 16907-4:2018. This course is aimed at providing
	practitioners involved in earthworks featuring soil stabilisation with an
	overall perspective and understanding of some of the design,
	specification and construction issues.
	This one-day course will begin by establishing how binders react with
	soils to change the engineering properties of soils. Delegates will
	then work through the mix design process to understand how
	decisions on binder combinations / contents are made to meet the
	needs of different engineering applications before siteworks
	commence. This will lead into a practical review of how the
	treatment is executed on site with consideration of case studies to
	Show now a well-managed treatment leads to successful outcomes.
	Consideration of failures will be used to signpost the potential pitfalls
	(e.g. sulphate swell) to watch out for and now risks can be controlled.
	and British Standards (o.g. UA74/07 and RS EN 16007 4:0010) will
	anu dhiish Siahuarus (e.g. HA/4/07 anu BS EN 16907-4:2018) Will be applied in discussions
	pe applied in discussions.

Course Tutor	The tutor will be Dr Paul Beetham CEng MICE. Paul has extensive experience of soil stabilisation working both for specialist contractors and as a consultant. Paul has a professional doctorate in soil stabilisation and is an ICE appointed Panel Expert advising HS2 on soil stabilisation.
Indicative	The indicative content comprises the following:
Content	How binders react with soil
	Overview of how treatments apply to different applications
	How 'mix design' processes determine binders type / dosage
	• Content and requirements of HA74/07 and BS EN 16907-4:2018
	Siteworks execution and workmanship considerations
	Case study reviews of successful / failure examples
	• Consideration of specification, testing, and verification aspects of
	limes and cement stabilisation